Specific Histidine Residues Confer Histatin Peptides with Copper-Dependent Activity against *Candida albicans*

Steven E. Conklin,† Emma C. Bridgman,‡ Qiang Su,† Pamela Riggs-Gelasco,§ Kathryn L. Haas,‡ and Katherine J. Franz*†‡

†Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
‡Department of Chemistry & Physics, Saint Mary’s College, Notre Dame, Indiana 46556, United States
§Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29424, United States

Supporting Information

ABSTRACT: The histidine-rich salivary peptides of the histatin family are known to bind copper (Cu) and other metal ions in vitro; however, the details of these interactions are poorly understood, and their implications for in vivo antifungal activity have not been established. Here, we show that the availability of Cu during exposure of *Candida albicans* to histatin-5 (Hist-5) modulates its antifungal activity. Antifungal susceptibility testing revealed that co-treatment of Hist-5 with Cu improved the EC₅₀ from ~5 to ~1 μM, whereas co-treatment with a high-affinity Cu-specific chelator abrogated antifungal activity. Spectrophotometric titrations revealed two previously unrecognized Cu(I)-binding sites with apparent K_a values at pH 7.4, ~20 nM, and confirmed a high-affinity Cu(II)-binding site at the Hist-5 N-terminus with an apparent K_a of ~8 pM. Evaluation of a series of His-to-Ala full-length and truncated Hist-5 peptides identified adjacent His residues (bis-His) as critical anchors for Cu(I) binding, with the presence of a third ligand revealed by X-ray absorption spectroscopy. On their own, the truncated peptides were ineffective at inhibiting the growth of *C. albicans*, but treatment with supplemental Cu resulted in EC₅₀ values down to ~5 μM, approaching that of full-length Hist-5. The efficacy of the peptides depended on an intact bis-His site and correlated with Cu(I) affinity. Together, these results establish new structure–function relationships linking specific histidine residues with Cu binding affinity and antifungal activity and provide further evidence of the involvement of metals in modulating the biological activity of these antifungal peptides.

Human saliva contains numerous antimicrobial peptides that protect against bacterial, fungal, and viral infection. While ROS have been implicated in fungal cell death, the source and mechanism remain unclear.

ROS formation is commonly associated with redox-active metals, which has made the investigation of Hist-5’s metal-binding properties an area of interest and speculation. Indeed, Hist-5 possesses multiple metal-ligating amino acid side chains, including seven histidines arranged in motifs characteristic of metalloproteins and metallopeptides. Notably, Hist-5 displays an amino-terminal Cu(II), Ni(II)-binding motif (ATCUN; H₂N-X-X-His), a His-Glu-X-X-His Zn(II)-binding motif, and a bis-His motif composed of adjacent histidines that support Cu(I) binding. The characteristic structures of Cu bound to ATCUN and bis-His motifs are shown in Figure 1. Metal-binding properties of Hist-5 have been proposed for nearly two decades, and its metal-binding interactions with Cu(II), Ni(II), Zn(II), and Fe(III) have been investigated in vitro. Metal binding has been observed to modify the
conformation and biological activity of Hist-5. Whereas binding to divalent ions like Cu(II), Ni(II), and Zn(II) was not found to stabilize the secondary structure of Hist-5,7 binding to Fe(III) has been shown to induce an α-helical conformation.22 At least one study showed that supplemental Zn(II) improved the bactericidal activity of Hist-527 while other studies showed no effect of Zn on Hist-5 candidacidal activity.22 On the other hand, Fe supplementation was observed to decrease the in vitro candidacidal activity of Hist-5, and Hist-5 itself caused a decrease in expression levels of iron uptake genes in C. albicans.22

The effects of Cu on the antifungal activity of Hist-5 have not been explicitly studied, although the authors of several reports in the literature speculate about a possible role of Cu redox chemistry in Hist-5 activity. For example, hydrogen peroxide was detected from aqueous solutions of Cu(II), Hist-5, and ascorbic acid, raising the intriguing possibility that Cu—Hist-5 complexes can catalyze ROS generation.29–31 The fact that yeast mitochondria have been shown to have a nonproteinaceous pool of copper in the mitochondrial matrix,32 where Hist-5 localizes, suggests ROS production as a feasible mechanism involved in killing.

To date, a lack of biological and chemical data to support or refute the hypothesis that Cu plays an important role in Hist-5 antimicrobial activity represents a significant gap in knowledge. Data about the coordination structures and binding affinities of both Cu(II) and Cu(I) with Hist-5 and whether Cu sites are required for Hist-5 activity are crucial for understanding the chemical details of Hist-5’s biological activity. Although interactions of Cu with Hist-5 and its model peptides have been investigated previously, the published affinity constant for interaction between Cu(II) and the ATCUN site of Hist-5 is surprisingly low $K_{\text{Hist-5-Cu(II)}} = 2.6 \times 10^7$15 compared to values found for other ATCUN peptide systems $K_{\text{Cu(II)p}}$ values ranging from 10^{11} to 10^{15}.19,33–35 To the best of our knowledge, the potential interactions between Hist-5 and Cu(I) have not been investigated. In addition, it is unknown what effect, if any, Cu-binding sites have on the antifungal activity of Hist-5.

Here, we reevaluate the Hist-5 Cu(II) affinity constant using methods similar to those that have recently been published for similar ATCUN-containing peptide systems.19,35 We also present new evidence of the affinity and coordination structures of Hist-5—Cu(I) binding. Additionally, we characterize the potential role of Cu in Hist-5 candidacidal activity and present the first evidence that Cu availability improves growth inhibition of C. albicans by Hist-5 in fungal growth assays. Furthermore, we show that the first 12 amino acids of Hist-5 retain significant antifungal activity in a Cu-dependent fashion, whereas modification of key Cu-binding residues abrogates activity. Interestingly, Cu-dependent growth inhibition correlates with the presence of a bis-His site and the affinity of the peptides for Cu(I). These findings reveal the importance of Cu and Cu-binding motifs for the antifungal activity of Hist-5, providing further evidence of the involvement of metals in modulating the biological activity of histatin antifungal peptides.

EXPERIMENTAL SECTION

Peptide Synthesis and Purification. All peptides were synthesized on a Protein Technologies PS3 automated peptide synthesizer using Fmoc-L-Tyr(Bu)-Wang or rink amide MBHA resins (Chem-Impex International Inc.) on a 0.1 mmol scale. Amino acid coupling was achieved using HBTU [O-benzotriazole-N,N,N′,N′-tetramethyluronium hexafluorophosphate (Chem-Impex International Inc.)] in the presence of N-methylmorpholine in N,N′-dimethylformamide (DMF) for 30 min cycles. Fmoc deprotection was accomplished by using 20% piperidine in DMF. Side chain deprotection and peptide cleavage from the resin were achieved by treatment with 5 mL of a solution of 95% trifluoroacetic acid (TFA), 2.5% ethanedithiol, and 2.5% trisopropylsilane (TIS, Sigma-Aldrich) for 4 h under N₂ gas to yield peptides with N-terminal free amines and C-terminal carboxylic acids for Hist-5 and C-terminal amide for model peptides. A continuous flow of N₂ gas was used to evaporate TFA to a volume of 2 mL. Afterward, the peptide was precipitated, washed three times with diethyl ether (Sigma-Aldrich), and left to air-dry. Peptides were purified using semiprep reverse-phase high-performance liquid chromatography (HPLC) on a C-8 column with a 40 min linear gradient from 3 to 97% acetonitrile in water, with 0.1% TFA. Purity was validated to >95% by analytical HPLC, and the masses of the peptides were confirmed by electrospray ionization mass spectrometry: calc for Hist-5 3036.3, found (M + 2H⁺) 1518.2; calc for Hist-5(H3A) 2970.2, found (M + H⁺) 1490.6, found (M + 2H⁺) 1452.3; calc for Hist-5(H18,19A) 2904.1, found (M + H⁺) 1490.7; calc for Hist-5(H7A) 1424.6, found (M + H⁺) 1424.6; calc for Hist-5(H18,19A) 2904.1, found (M + H⁺) 1490.7; calc for Hist-5(H7A) 1424.6, found (M + H⁺) 1424.9; calc for H7A 1385.8, found (M + H⁺) 1359.1.

Preparation of Stock Solutions. Peptide stock solutions were prepared by dissolving the lyophilized peptide in 1 mL of nanopure water. The concentration of stock solutions was determined using absorbance at 280 nm between 0.1 and 1 absorbance unit. The concentration of the peptide solution was determined from the A₂₈₀ readings using an extinction coefficient of 1450 M⁻¹ cm⁻¹ for each tyrosine.37 Peptide stock solutions were stored in sealed cryogenic storage vials. Copper(II) stock solutions were prepared by dissolving copper sulfate (CuSO₄·5H₂O, Sigma) in nanopure water and standardized by EDTA titration in an ammonium buffer to a murexide end point. Copper(I) solutions were prepared by dissolving [Cu(CH₃CN)₄]PF₆ (Aldrich) in anhydrous acetonitrile (Fisher) and subsequently

![Figure 1. Signature Cu-binding motifs present in histatin peptides. (a) A free amino terminus and a histidine in the third position make ATCUN motifs (amino-terminal Cu/Ni binder) favorable for square planar Cu(II). (b) Adjacent histidines (bis-His) anchor Cu(I) in a linear fashion but can accommodate higher coordination if additional ligands contribute. (only shown).](image-url)
standardized with the use of the chromophoric ligand bicinechonicin (BCA). The concentration of Cu(I) solutions was determined from the absorption at 563 nm due to the Cu(I)(BCA) complex (ε = 7900 M⁻¹ cm⁻¹).³⁸

Ultraviolet–Visible (UV–vis) Spectroscopy. Absorption spectra were recorded in 1 cm quartz cuvettes on a Varian Cary 50 UV–vis spectrophotometer for studies with Cu(II). All spectrophotometric experiments using Cu(I) were conducted on an SI Photonics model 420 fiber-optic CCD array spectrophotometer located inside a Siemens MBraun glovebox under an inert N₂ atmosphere.

Determination of Peptide–Copper Binding Constants. Apparent association constants for Cu(I) and Cu(II) binding were determined in 50 mM HEPES buffer at pH 7.4, as described in the Supporting Information. The association constants were determined by fitting the adequate binding equilibrium models using GraphPad Prism.³⁹

Cu(II) Apparent Binding Constants. Nitrilotriacetic acid (NTA) was used as a competitive ligand to obtain apparent binding constants for peptide–Cu(II) complexes in 50 mM HEPES buffer (pH 7.4) from spectrophotometric titration data. Aliquots (0.75 μL) of the peptide stock solution were titrated into solutions containing 132 μM CuCl₂ to establish the exchange equilibrium expressed by eq 1 (derived from the competing equilibria expressed in eqs 8–12). The concentration of the Cu(Fz)₂ complex at each point in the titration was calculated from its characteristic visible absorbance at 470 nm (ε = 4320 M⁻¹ cm⁻¹).¹⁸,⁴¹ Calculations of the other species present in solution were calculated from mass-balance equations. Data plotted as [Cu(Fz)₂] versus [peptide]total were fit to equilibrium models shown in eq 8 using GraphPad Prism to obtain Kₚ. In eqs 7–10, m and n stand for the stoichiometric values for the component, which varies depending on the binding model. The desired Kₚ[Cu(I)] was then calculated from eq 8 using the known value for Fz [log Kₚ,Fz,Cu(I) = 11.56 at pH 7.4].¹⁸

\[\text{mP} + n\text{Cu(I)(Fz)} \leftrightarrow m\text{P} + n\text{Fe} \] \hspace{1cm} (7)

\[K_{\text{ex}}^n = \frac{[\text{Cu(I)(Fz)}]^n}{[\text{Cu(I)}]^n \cdot [\text{Fz}]^n} \] \hspace{1cm} (8)

\[m\text{P} + n\text{Cu(I)} \leftrightarrow m\text{P} + n\text{Cu(II)} \] \hspace{1cm} (9)

\[K_{\text{mP,nCu(I)}} = \frac{[\text{Cu(I)(Fz)}]^n}{[\text{Cu(I)}]^n \cdot [\text{Fz}]^n} \] \hspace{1cm} (10)

\[\beta_{\text{Cu(I)(Fz)}} = \frac{[\text{Cu(I)(Fz)}]^n}{[\text{Cu(I)}]^n} \] \hspace{1cm} (11)

Correction for [Fe(II)(Fz)₃]⁴⁻ Formation. Contributions to the absorbance at 470 nm due to the formation of [Fe(II)(Fz)₃]⁴⁻ were determined and corrected by using eqs 13 and 14, as previously described.¹⁸ [Fe(II)(Fz)₃]⁴⁻ exhibits an absorption maxima at 568 nm (ε = 25000 M⁻¹ cm⁻¹) and around 470 nm (ε = 8600 M⁻¹ cm⁻¹); absorption maxima of [Cu(I)(Fz)₂]³⁻. The ε values for [Cu(I)(Fz)₂]³⁻ at 470 and 568 nm are 4320 and 2600 M⁻¹ cm⁻¹, respectively.¹⁸

\[\text{Abs}(470 \text{ nm}) = \epsilon_{\text{Fe}} \frac{470 \text{nm}[\text{Fe(II)(Fz)}_3]}{[\text{Fe(II)(Fz)}_3]} \] \hspace{1cm} (13)

\[\text{Abs}(568 \text{ nm}) = \epsilon_{\text{Fe}} \frac{568 \text{nm}[\text{Fe(II)(Fz)}_3]}{[\text{Fe(II)(Fz)}_3]} \] \hspace{1cm} (14)

EXAFS Data Collection and Analysis. All EXAFS samples were prepared in a nitrogen-filled anaerobic glovebox with degassed buffers and reagents. Solutions of Cu(I) with Hist 1–12, H3A, or H7,8A peptides [1 mM peptide, 0.9 mM Cu(CH₃CN)₂PF₆, 50 mM HEPES (pH 7.4), and 30% (v/v) glycerol] were loaded into a capillary EXAFS sample cell wrapped in Kapton tape and flash-frozen in liquid nitrogen. Spectra were collected at the Stanford Synchrotron Radiation Laboratory (SSRL), beamline 9-3. The SSRL storage ring was operating at 3 GeV in top-off mode with a ring current of 500 mA. Beamline 9-3 uses a focusing mirror and has Si(220) monochromator crystals, and a 13 keV energy-cutoff mirror was used to reject harmonics. Copper fluorescence was detected with a Canberra 100 element germanium detector. Samples were maintained at 10 K in an Oxford liquid helium continuous flow cryostat. A 6 μm nickel filter with a Soller-slit assembly was placed between the cryostat window and the detector to reduce scatter. The energy was calibrated by simultaneously measuring the edge spectrum of a copper foil, with the energy of the rising
Table 1. Names, Sequences, and Apparent Cu-Binding Affinities (50 mM HEPES, pH 7.4) of Hist-5 and Truncated Peptides

<table>
<thead>
<tr>
<th>peptide</th>
<th>sequence</th>
<th>log K Cu(II)</th>
<th>log(K_F) Cu(I)</th>
<th>log(K_i) Cu(I)</th>
<th>model [F:Cu(I)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist-5</td>
<td>DSH'A KR'KH'GYKRFPHKH'H'SHRGY</td>
<td>11.1 ± 0.2</td>
<td>7.8 ± 0.2</td>
<td>7.6 ± 0.3</td>
<td>1:2</td>
</tr>
<tr>
<td>Hist 1-12</td>
<td>DSH'A KR'KH'GYKRFPHKH'H'</td>
<td>11.4 ± 0.4</td>
<td>7.1 ± 0.3</td>
<td>-</td>
<td>1:1</td>
</tr>
<tr>
<td>H3A</td>
<td>DSH'A KR'KH'GYKR</td>
<td>N/A</td>
<td>6.7 ± 0.4</td>
<td>-</td>
<td>1:1</td>
</tr>
<tr>
<td>H7A</td>
<td>DSH'A KR'KH'GYKR</td>
<td>11 ± 1</td>
<td>5.1 ± 0.1</td>
<td>-</td>
<td>2:1</td>
</tr>
<tr>
<td>H7,8A</td>
<td>DSH'A KR'KH'GYKR</td>
<td>11.6 ± 0.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

“Histidines (H) are shown in bold; alanine (A) substitutions are shown in bold and italic. Both A and H of interest are labeled with the number of their location in the peptide sequence. Both ATCUN and bis-His motifs are underlined. All peptides contain a free amino N-terminus. The C-terminus is a carboxylic acid for Hist-5 and an amide for the truncated peptides. Apparent affinity constants (log K) for Cu(II) and Cu(I) were determined in 50 mM HEPES buffer (pH 7.4), according to the indicated stoichiometric model.

RESULTS

Hist-5 and a series of truncated peptides based on its first 12 amino acids were synthesized via Fmoc solid-phase peptide synthesis. Truncated peptides with His-to-Ala substitutions were prepared to probe the importance of His residues to Cu(II) and Cu(I) binding affinity and antifungal activity; names and sequences are listed in Table 1.

The ATCUN Site Confers Hist-5 with a High Affinity for Cu(II). Addition of CuSO_4 to buffered solutions of Hist-5 resulted in an absorption band centered at 530 nm (ε = 110 M⁻¹ cm⁻¹), indicative of a square-planar, 4-coordinate environment of Cu(II) bound to an ATCUN site, as drawn in Figure 1.5 Nearly identical absorption bands were observed for all the peptides except H3A, which resulted in a red-shift of the absorbance to ~620 nm (Figure 2).

![Figure 2](image)

Determination of the apparent affinity constants at pH 7.4 for binding of Cu(II) to each peptide was facilitated by using nitrilotriacetic acid (NTA) as a competitive ligand (Figure 3), an appropriate methodology for determining metal—protein or peptide affinities. Hist-5 was determined to bind Cu(II) with an apparent log K_Hist-5-Cu(II) of 11.1 ± 0.2 (K_J ~ 8 pM).
While direct titration of Hist-5 with Cu(II) indicated that Hist-5 is capable of binding >1 equiv of Cu(II), as reported by others, the competition studies showed that none of these additional sites are strong enough to compete with NTA for Cu(II). As shown in Table 1, neither truncation of the first 12 residues nor replacement of His 7 and 8 diminished the Cu(II) affinity. Peptide H3A, on the other hand, did not compete for Cu(II) with NTA; therefore, its affinity is too weak to be measured by this method. Together, these results confirm that Hist-5 binds Cu(II) preferentially via the ATCUN site, regardless of other potential metal-binding residues present, and altering this site drastically decreases its Cu(II) affinity.

The Bis-His Motif Contributes to Cu(I) Binding of Hist-5 Peptides. Apparent binding affinities for Cu(I) were determined anaerobically by using ferrozine (Fz) as a colorimetric competitive chelator (Figure 4). Addition of Hist-5 caused a decrease in the intensity of the characteristic [Cu(I)(Fz)2]4⁻ absorption bands at 470 and 610 nm, indicating competition between the peptide and Fz for Cu(I). A weak feature observed late in the titration at 568 nm indicates formation of [Fe(II)(Fz)3]5⁻ due to trace iron, as has been observed previously. Data were corrected for this contribution. These data show that Hist-5 is the best at competing with Fz for Cu(I), with the truncated peptides retaining Cu(I) binding affinity that varies depending on the presence and position of His residues. Titrations performed in both directions [peptide to Cu(Fz)2] and Fz to Cu(peptide) returned similar results (Figure S2).

The stoichiometry of binding was assessed by fitting titration data to multiple peptide–Cu binding models, including 1:1, 1:2, and 2:1, as shown in Figure S3, with the final log K values listed in Table 1. Of the peptides tested, only Hist-5 displayed a 1:2 peptide–Cu(I) complex, likely because of the presence of two bis-His motifs, to give an overall log K_{P:2Cu(I)} of 15.4 ± 0.2. A reverse titration of Fz into a 1:1 Cu(I)/Hist-5 solution provided a log K_{P:Cu(I)} of 7.8 ± 0.2 for the first site, allowing calculation for the second site to be a log K_{P:Cu(I)} of 7.6 ± 0.3. These similar values correspond to dissociation constants (Kd) for each bis-His Cu(I) site between 16 and 25 nM.

Truncated peptide Hist 1−12 was best fit by a 1:1 peptide–Cu(I) binding model with an apparent log K_{P:Cu(I)} of 7.1 ± 0.3 (Kd = 79 nM), a value slightly weaker than those of the individual binding sites of full-length Hist-5. If this binding site were comprised exclusively of the bis-His motif, H3A would be expected to return a similar value, yet the best fit 1:1 binding model yields a weaker Kd of 200 nM, suggesting that the histidine at the third position facilitates strong Cu(I) coordination at the bis-His site. The importance of maintaining the adjacent His residues for effective Cu(I) binding by histatin peptides is highlighted by the fact that eliminating both of them rendered peptide H7,8A incapable of competing for Cu(I) from Fz, while eliminating just one of them (H7A) gave a peptide that only weakly competes with Fz for Cu(I) and does so by forming a 2:1 peptide–Cu(I) complex.

Overall, these spectroscopic data show that the histidine-rich sequence of Hist-5 supports Cu(I) coordination via its bis-His motifs, with a potential contribution from an additional His.

X-ray Absorption Spectroscopy Reveals That His3 Is Involved in Coordination of Cu(I) at the Bis-His Site. To confirm the presence of a Cu(I)-binding site in the histatin peptides, samples of Cu(I)-loaded Hist 1−12, H3A, and H7,8A were analyzed using X-ray absorption spectroscopy. Figure 5a compares the X-ray absorption near edge spectra (XANES) for the three peptide complexes. XANES spectra of Cu are quite sensitive to coordination number and oxidation state, as described by Kau et al. In particular, the presence of a prominent 1s-to-4p feature at ~8984 eV (vertical line) and the absence of a 1s-to-3d transition unambiguously indicate that the peptides are all binding Cu(I). The intensity of these features relative to the total edge height is inversely proportional to the coordination number. Two-coordinate near-linear geometries typically have intensities equivalent in magnitude to the main edge. The Hist 1−12 peptide samples evaluated had amplitudes between 0.6 and 0.8 relative to the edge that is normalized to 1. Figure 5a shows the sample with the highest intensity we observed; it has a magnitude between the intensity values reported for pure two-coordinate (~1.0) and pure three-coordinate (~0.6) compounds. In the compounds evaluated by Kau et al., the only three-coordinate complex with a 1s-to-4p transition with this magnitude of 0.8 was a T-shaped coordinate system with short 1.87 Å Cu–N bond lengths. The H3A peptide complexes consistently had an amplitude of the edge feature at 8984 eV slightly higher than that of the Hist 1−12
Figure 5. X-ray absorption spectroscopy data for Hist 1−12, H3A, and H7,8A. (a) XANES spectra of Hist 1−12 (green), H3A (blue), and H7,8A (red). The vertical line is 8984 eV. EXAFS spectra of (b) Hist 1−12 and (c) H3A (k2-weighted) in k space (Å−2) and the corresponding Fourier transform of the data (Å, offset by phase shift α). Unfiltered and unsmoothed data are shown as the thin line in each frame; the thick line represents the best five- and four-shell fit to the data (for Hist 1−12 and H3A, respectively, as shown in bold in Table S1). Data were fit over a k range of 1−13 Å−1.

Figure 5c shows the best four-shell fit for the H3A peptide, indicated in bold in Table S1.

Metal-Binding Motifs Affect Antifungal Activity of Hist-5. Antifungal susceptibility assays were performed to evaluate the effect of supplemental Cu(II) and Fe(III) on the antifungal activity of Hist-5. The C. albicans yeast cells treated with Hist-5 alone exhibited an EC50 of 5.15 μM (Figure 6a, black bars), while co-treatment with 100 μM FeCl₃ rendered Hist-5 ineffective at inhibiting growth (Figure 6a, red bars). In fact, low micromolar Fe(III) was sufficient to cause a decrease in activity (Figure 6b and Figure S6). Contrary to Fe(III), the addition of CuSO₄ caused a decrease in the EC50 of Hist-5 to 1.36 μM (Figure 6a, blue bars). Low micromolar concentrations...
of added Cu(II) were sufficient to cause a decrease in EC₅₀ (Figure 6b and Figure S5). Neither Cu(II) nor Fe(III) by itself inhibited growth of C. albicans in the concentration range tested [0–100 μM (Figure S4a,b)]. It is worth noting that increasing concentrations of both of these metal ions increased the duration of the lag phase of C. albicans, as expected for a change in growth environment that includes high metal levels.⁵⁰

Taken together, these metal supplementation data reveal that Fe and Cu both potentiate the antifungal activity of Hist-5, but in opposite directions, with Fe abrogating activity and Cu facilitating activity.

To evaluate the relevance of the Cu-binding sites on antifungal activity, a series of mutant full-length Hist-5 peptides were tested (Table 2). Replacement of the ATCUN or either of the two bis-His motifs caused an increase in the EC₅₀ to 15.8, 13.0, and >100 μM [Hist-5(H3A), Hist-5(H7,8A), and Hist-5(H18,19A), respectively]. Co-treatment with Fe(III) inhibited the antifungal activity of all the full-length mutants, as observed with Hist-5. Contrary to Fe(III), supplementing with Cu(II) caused a decrease in EC₅₀ values for Hist-5(H3A) and Hist-5(H18,19A) to ∼5.00 and 1.35 μM, respectively. Strikingly, Hist-5(H7,8A) remained ineffective at all concentrations tested, even with Cu treatment. Whereas loss of the H₁₈,H¹⁹ bis-His site only mildly modulates antifungal activity compared to that of Hist-5, the complete loss of activity for the mutant lacking H⁷,H⁸ emphasizes the importance of the bis-His motif most proximal to the ATCUN motif. Furthermore, Hist-5(H18,19A) exhibits an EC₅₀ upon Cu treatment similar to that of Hist-5, therefore suggesting the importance of the most proximal bis-His site for Cu-potentiated activity.

Unlike the full-length peptides, none of the truncated peptides alone exhibited an EC₅₀ below 25 μM (Table 2). Co-treatment with Fe(III) did not have any observable effect on growth, which is not surprising given that they were not active on their own at the concentrations tested. Interestingly, however, co-treatment of peptides with Cu(II) revealed EC₅₀ values for Hist 1–12, H3A, and H7A to be ∼5, 6, and 14 μM, respectively. Peptide H7,8A, on the other hand, remained ineffective at all concentrations tested, regardless of Cu treatment. The minimal difference in EC₅₀ for Hist 1–12 compared to H3A suggests that His3 is not critical for antifungal activity. The finding that H7A is less effective and H7,8A is completely ineffective suggests the importance of an intact bis-His motif for the Cu-dependent antifungal activity of the truncated Hist-5 peptides. The results obtained with the truncated peptides uphold the results obtained with the full-length mutant peptides, further suggesting the importance of the bis-His motif for the Cu-dependent antifungal activity of Hist-5.

The metal dependence of Hist-5 antifungal activity was further tested by co-treating cells with peptides and either bathocuproine disulfonate (BCS), a cell impermeable chelator frequently used to limit Cu availability in cell culture, or ethylenediaminetetraacetic acid (EDTA), a general metal ion chelator. Initial susceptibility testing of the ligands alone showed that concentrations of ≤2 mM BCS and ≤0.25 mM EDTA were well tolerated by C. albicans (Figures S4). Co-treatment with peptides and 2 mM BCS completely abrogated the growth inhibitory activity of Hist-5 (Figure 6a, purple bars), whereas 0.25 mM EDTA caused an increase in EC₅₀ to 22.5 μM (Figure 6a, green bars). These results bolster the Cu supplementation results and further support the concept that Cu availability influences the antifungal activity of Hist-5.

To buttress the assumption that the effect of BCS on the antifungal activity of Hist-5 is due to BCS competing with Hist-5 for binding Cu, a solution of 7 μM Hist-5 and 7 μM CuSO₄ was prepared in YPD medium and incubated with varying concentrations of BCS for 1 h. As observed in Figure 7, the characteristic Cu(II)–ATCUN absorption feature (∼530 nm) was not detected at the concentration analyzed of the Cu-bound Hist-5 complex. Addition of BCS resulted in the dose-dependent formation of an absorption band at ∼483 nm (ε = 13300 M⁻¹ cm⁻¹),⁵¹ indicative of the [Cu(BCS)_3]³⁻ complex. At 2 mM BCS, the calculated concentration of the [Cu(BCS)_3]³⁻ complex based on its absorbance at 483 nm was 7.3 μM. This concentration matches the 7.0 μM Cu added in solution together with the basal Cu concentration of the YPD medium (0.27 ± 0.04 μM, as determined by ICP-MS), indicating that all Cu has been reduced and sequestered as the Cu(II)–BCS complex. These results corroborate that under the

Table 2. EC₅₀ Values for Hist-5, Full-Length Mutants, and Truncated Peptides against the Yeast Morphotype of C. albicans under Metal-Supplemented and -Depleted Conditions

<table>
<thead>
<tr>
<th>peptide</th>
<th>no supplement</th>
<th>with 100 μM Cu(II)SO₄</th>
<th>with 2 mM BCS</th>
<th>with 100 μM Fe(III)Cl₃</th>
<th>with 0.25 mM EDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hist-5</td>
<td>5.15 ± 0.03</td>
<td>1.36 ± 0.02</td>
<td>>100</td>
<td>>100</td>
<td>22.5 ± 0.1</td>
</tr>
<tr>
<td>Hist-5(H3A)</td>
<td>15.8 ± 0.04</td>
<td>5.00 ± 0.01</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Hist-5(H7,8A)</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Hist-5(H18,19A)</td>
<td>13.0 ± 0.01</td>
<td>1.35 ± 0.09</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>Hist 1–12</td>
<td>>25</td>
<td>4.74 ± 0.02</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>H3A</td>
<td>>25</td>
<td>6.16 ± 0.04</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>H7A</td>
<td>>25</td>
<td>14.06 ± 0.05</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
<tr>
<td>H7,8A</td>
<td>>25</td>
<td>>25</td>
<td>>100</td>
<td>>100</td>
<td>>100</td>
</tr>
</tbody>
</table>

Peptide sequences are shown in Table 1; His-to-Ala replacements of full-length Hist-5 follow the numbering in Table 1.

Figure 7. Cu chelator BCS is capable of outcompeting Hist-5 for Cu binding. UV–vis spectra of 7.0 μM Hist-5 and 7.0 μM Cu(II)SO₄ in YPD medium incubated for 1 h with a BCS concentration increasing from 0 to 2 mM.
2 mM BCS conditions used in the antifungal assays, Cu is not available to Hist-5. To test the fungicidal activity of Hist-5, C. albicans cells were incubated overnight in YPD (normal protocol) or in YPD supplemented with 100 μM CuSO4 or 2 mM BCS. ICP-MS was used to verify the cell-associated Cu content for each of the conditions. Cells grown under these basal, Cu-replete, or Cu-depleted conditions (1, 126, or 0.3 nmol of Cu/mg of P, respectively) were then washed to remove the treatments before exposure to Hist-5 alone or with 2 mM BCS for 1.5 h in buffer before being plated on fresh agar and grown overnight. As shown in Figure 8b, this killing assay (spot test) confirmed that Hist-5 is fungicidal above 6 μM, whereas co-treatment with BCS prevented the fungicidal activity (Figure 8b, II vs I). Notably, the Cu contents for cells grown under these conditions were the same, within error (Figure 8a, II vs I). Cells grown overnight with BCS, however, showed a 70% decrease in the level of cell-associated Cu (0.308 nmol of Cu/mg of P) compared to the basal level (1.0 nmol of Cu/mg of P). Under these conditions, Hist-5 was not fungicidal at the concentrations of >12 μM as cells grown in YPD. In contrast, (IV) cells grown overnight in YPD and 100 μM CuSO4 prior to Hist-5 treatment were sensitized to Hist-5.

■ DISCUSSION

Hist-5 has been previously shown to have metal-binding capabilities, including for Cu(II); however, the relevance of binding of Cu to Hist-5 antifungal activity has not previously been established, and biological and spectroscopic evidence to support claims of metal-associated activity is lacking. The work presented here provides evidence that the histidine-rich sequence of Hist-5 confers the salivary peptide with a high affinity for Cu in both Cu(I) and Cu(II) oxidation states. X-ray absorption spectra indicate that both Hist 1–12 and H3A bind Cu(I) using the bis-His-binding site, as evidenced by substantial histidine scattering in the EXAFS and by the prominent pre-edge feature that results from a 1s→4p transition in Cu(I).

Most importantly, the antifungal data collected on full-length Hist-5 and several His-to-Ala mutant and truncated peptides provide the first evidence that links the Cu-binding capability of histatin peptides with their antifungal activity against C. albicans.

Competition titration data indicated that Hist-5 binds Cu(II) in an ATCUN site with an apparent $K_{\text{Hist-5-Cu(II)}}$ of approximately 10^{11} (Kd ~ 8 pM). This affinity for Cu(II) is significantly higher than the value previously reported for binding of Cu(II) to Hist-5 [$K_{\text{Hist-5-Cu(II)}} = 2.6 \times 10^7$]; however, it is more in line with the value that would be expected on the basis of a similar analysis of ATCUN sites in human albumin [$K_{\text{albumin-Cu(II)}} = 10^{12}$] and models of the human copper transporter [Ctr1; $K_{\text{Ctr1-Cu(II)}} = 10^{11}$]; our results are in significant disagreement with those of Gusman et al., and we suggest that the conditional nature of the reported values and the difference in methodology can explain why these values differ by approximately 4 orders of magnitude. The competition equilibrium methodology used here minimizes many of the problems that can plague the determination of metal—protein affinities, including metal hydrolysis and binding to adventitious sites and buffer components. Gusman et al. employed isothermal titration calorimetry in choline chloride buffer in determining $K_{\text{Hist-5-Cu(II)}}$. Choline chloride is a Good’s buffer; however, Good’s buffers are not completely innocent in interactions with all metal ions. Choline chloride has a primary amine functional group capable of significant interaction with Cu(II), and to the best of our knowledge, the interactions of this buffer with Cu(II) have not been characterized. HEPES buffer is also a Good’s buffer that is non-innocent in its interactions with Cu(II), but it is recommended for study of interactions of Cu(II) with biological ligands because interactions between Cu(II) and HEPES are fully characterized. HEPES is the buffer that was used here, and in the determination of Cu(II) affinity with albumin and Ctr1 referenced above. We note that the reported value for albumin is a conditional constant in which contributions of interactions of HEPES buffer with Cu have been accounted for. However, in the case of the reported values for binding of Cu(II) to the Ctr1 model peptide, and here for Hist-5, HEPES buffer contributions are ignored. Thus, although these three ATCUN-containing polypeptides were examined under similar conditions, the values for Hist-5 and Ctr1 model peptides can be directly compared but should not be directly compared to that of albumin. If buffer contributions are accounted for in the latter two cases, all three systems retain nearly identical affinities. The comparable affinities of Hist-5 and other ATCUN–Cu(II) peptides and proteins suggest that Hist-5 would be capable of competing with Cu(II)-binding proteins in saliva, including albumin.

While Cu would not be expected to exist extracellularly as Cu(I), the presence of reductants or any redox cycling of Cu-bound histatin would provide sources of Cu(I). Our results indicate that the bis-His motifs contribute to the moderate, nanomolar affinity of histatin peptides for Cu(I). Bis-His sites have been shown to bind Cu(I) in other systems, including amyloid-β, with an affinity of ~130 nM, and model peptides of the copper transport protein, human Ctrl1, with subnanomolar affinity. Additional Met- or His-ligating residues were postulated to complement the bis-His Cu(I)-binding site in the human Ctrl1 peptides, and the data here also suggest that additional ligating residues may complement the bis-His site in histatins.
Indeed, fits to Hist 1–12 indicate that a third ligand is present as a nearest neighbor. The 1.90 Å distance refined for the bis-His Cu–N distances is slightly outside the normal window for pure two-coordinate bis-His binding. EXAFS distances do have an uncertainty of ±0.02 Å due in part to the strong correlation of distance with the chosen value of E_0, the threshold energy; this leaves open the possibility that our longer distance is, within the error of the measurement, indicative of a two-coordinate complex. However, we note that ΔE_0 must be forced to an unusually high value to tweak the distance down to 1.88 Å in a fit; these high ΔE_0 values are inconsistent with both our own calibration of ΔE_0 values and those reported by others using the same modeling programs. In addition, the magnitude of the 1s-to-4p transition at ~8984 eV ranges from 0.6 to 0.8 in the samples we evaluated, and these magnitudes are more indicative of a three-coordinate Cu(I) complex. Two-coordinate Cu(I) bis-His ligation in amyloid-β peptide fragments and human prion protein fragments both refined to shorter Cu–N distances (1.88 Å) and typically have higher pre-edge intensities. Finally, if the coordination of Cu(I) in Hist 1–12 and H3A were only reliant on the two adjacent His residues as ligands, then we would expect the EXAFS spectra of these peptides to be identical, and they are not. There are in fact subtle changes in the EXAFS both in the first shell and in the outer shells where histidine back-scattering predominates. For H3A, the third ligand is very disordered and a clean minimum cannot be found for this subshell with the fits. In addition, there are visible changes associated with the histidine peaks in the FT when His3 is absent. The structural differences apparent in the EXAFS for Hist 1–12 and H3A and the binding differences evident in the K_α values suggest that the third ligand for Hist 1–12 may be provided by His3.

The spectroscopic results illustrating the strong binding affinity of Hist-5 for Cu(I) and Cu(II) raise the question of whether Cu plays a role in its activity. We therefore speculated that the antifungal activity of Hist-5 may be modulated by the availability of metals in general, and copper specifically. Indeed, the presence or absence of Cu(II) and Fe(III) dramatically affected the activity of Hist-5 and its derivatives against C. albicans. The loss of Hist-5 antifungal activity in the presence of Fe(III) confirmed prior reports. Interesting to us, however, was the improvement in the candidacidal activity of Hist-5 supplemented with Cu, shifting the EC_{50} from 5.15 to 1.36 μM. Conversely, inclusion of the extracellular copper chelator BCS completely rescued Candida growth at otherwise inhibitory concentrations of Hist-5.

The Cu-modulated activity of Hist-5 has several possible explanations. The apparent Cu-facilitating activity could be a coincidental result of Hist-5 and Cu levels affecting different but interconnected cellular processes. Alternatively, Hist-5 and Cu could directly interact to create a fungalicidal complex. The observation that antifungal activity of the “mutant” peptides correlated with their physical ability to bind Cu(I) provides some evidence that favors a direct interaction. Basal levels of Cu in the growth medium or in situ may supply Hist-5 with sufficient Cu cofactor for activity. The observation that cells cultured in Cu-replete medium were sensitized to Hist-5 activity supports this idea (Figure 8b). Alternatively, Hist-5 may have both Cu-dependent and independent mechanisms of action. Cu supplementation may boost a Cu-dependent mechanism, thus a decrease in EC_{50}.

The lack of Hist-5 candidacidal activity observed upon co-treatment with BCS would seem to favor a Cu-dependent mechanism. However, an alternative explanation could be that C. albicans undergoes metabolic adaptations to a Cu-deprived environment created by BCS that reduces its susceptibility to Hist-5. Cu deficiency is known to limit fungal cell growth and leads to downregulation of respiratory function, presumably to preserve Fe and Cu for the most critical cellular processes. It has been shown that anaerobic conditions and metabolic inhibitors protect C. albicans against Hist-5. Therefore, BCS may be reducing or inhibiting respiratory function by depleting Cu, thereby rendering Hist-5 ineffective. The results of the ICP-MS and spot assay in panels a and b of Figure 8, however, showed that exposure to 2 mM BCS for 1.5 h does not deplete cellular Cu levels but does abrogate activity of Hist-5, suggesting that cellular Cu deficiency itself is not the primary driver behind the effect of BCS on Hist-5 activity. Consistent with the results from Figure 6, the effect of BCS was most pronounced when cells were exposed to Hist-5 and BCS at the same time, suggesting that BCS diminishes Hist-5 activity by withholding or competing Cu away from a direct interaction with Hist-5, as observed in Figure 7. Combined, these results support a model that invokes Cu as a cofactor necessary for the optimal antifungal activity of Hist-5.

Several studies have explored amino acid sequence requirements for the antifungal activity of Hist-5. Among a series of histatin fragments, C-terminal peptides with chain lengths of >14 residues were found to retain activity similar to that of full-length Hist-5, while N-terminal fragments were less active. Among other variations in experimental design, that study did not test the effect of Cu or other metals on activity, although all of the active fragments did contain at least one bis-His motif. In the study presented here, we also found that N-terminal fragments showed diminished activity; in fact, a maximal concentration of 100 μM Hist 1–12 failed to inhibit the growth of C. albicans. However, addition of Cu restored the activity of Hist 1–12 to levels approaching that of full-length Hist-5. Furthermore, we found that mutating the H7-H9 bis-His site of the full-length Hist-5 mutant rendered the peptide ineffective, whereas eliminating the H7-H9 bis-His site retained activity. On the basis of our series of N-terminally truncated and full-length mutant peptides, Cu-dependent activity depends on a bis-His motif, particularly the H7-H9 site, but not an ATCUN site.

Bis-His motifs are commonly found in biological systems and have been observed to bind Cu(I) in a linear fashion, while also accommodating an additional ligand. The coordination motif has been shown to grant Cu(I)–bis-His complexes with O2 reactivity, leading to the generation of ROS. Our XAS results corroborate a similar Cu(I) coordination mode by the histatin-derived peptides, suggesting that the Cu(I)–histatin complex could potentially mediate Cu-induced ROS, which in turn could elicit fungal killing. Altogether, the XAS and antifungal assay results suggest that the bis-His site not only may serve as a primary anchor for Cu(I) binding but also, once bound to Cu(I), may be directly responsible for the antifungal activity of histatin-5. This speculation will require further experimental testing.

The results here provide evidence that Cu contributes to the antifungal activity of histatin peptides, but how Cu contributes to its mechanism of action remains an open question.
Perhaps its ability to stabilize both Cu(I) and Cu(II) endows it with unique redox properties, a hypothesis we are currently exploring.

ASSOCIATED CONTENT

1 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.biochem.7b00348.

Additional spectrophotometric assays, a table of XAS structural results, antifungal susceptibility assays, and equations used for calculation of apparent binding constants (PDF)

AUTHOR INFORMATION

Corresponding Author*

E-mail: katherine.franz@duke.edu. Telephone: (919) 660-1541.

ORCID

Steven E. Conklin: 0000-0003-3158-235X

Katherine J. Franz: 0000-0002-9015-0998

Funding

S.E.C. and K.J.F thank the National Institutes of Health (NIH) for supporting this work (GM084176 and GM084146-S1). S.E.C. also thanks Duke University BioCoRE (R25-GM103393), for supporting the SSRL Structural Molecular Biology Program.

Notes

The authors declare no competing financial interest.

ABBREVIATIONS

Hist-5, histatin-5; ATCUN, amino-terminal Cu(II) Ni(II) binding motif; ROS, reactive oxygen species; NTA, nitritotriacetic acid; Fz, ferrozine; XAS, X-ray absorption spectroscopy; BCS, bathocuproine disulfonate; EDTA, ethylenediaminetetraacetic acid; PPB, potassium phosphate buffer; ICP-MS, inductively coupled plasma mass spectrometry.

REFERENCES

(39) GraphPad Prism version 7, GraphPad, La Jolla, CA.

